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Abstract. This paper proposes a novel multi-prior collaboration frame-
work for image restoration. Different from traditional non-reference im-
age restoration methods, a big reference image set is adopted to provide
the references and predictions of different popular prior models and ac-
cordingly further guide the subsequent multi-prior collaboration. In par-
ticular, the collaboration of multi-prior models is mathematically formu-
lated as a ridge regression problem. Due to expensive computation com-
plexity of handling big reference data, scatter-matrix-based kernel ridge
regression is proposed, which achieves high accuracy while low complexi-
ty. Additionally, an iterative pursuit is further proposed to obtain refined
and robust restoration results. Five popular prior methods are applied
to evaluate the effectiveness of the proposed multi-prior collaboration
framework. Compared with the state-of-the-art image restoration ap-
proaches, the proposed framework improves the restoration performance
significantly.

1 Introduction

Mathematically, image restoration aims to reconstruct the original high quality
image u from its observed degradation y, which is a typical ill-posed linear
inverse problem and can be generally formulated as

y = Hu+ n , (1)

where u ∈ Rd and y ∈ Rd are lexicographically stacked representations of the
original image and the degraded image, respectively, H ∈ Rd×d is a matrix
representing a non-invertible linear degradation operator and ∈ Rd is usually
additive Gaussian white noise. When H is an identity matrix, the problem be-
comes image denoising [1]; when H is a blur operator, the problem becomes
image deblurring [2]; when H is a mask, that is, H is a diagonal matrix whose
diagonal entries are either 1 or 0, the problem becomes image inpainting [3]; when
H is a set of random projections, the problem becomes compressive sensing [4,
5]. To cope with the ill-posed nature of image restoration, one type of scheme
in the literature employs image prior knowledge for regularizing the solution to
the following minimization problem

argmin
u

1

2
∥Hu− y∥22 + λΨ(u) , (2)
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where 1
2∥Hv−y∥22 is the ℓ2-norm based data-fidelity term, Ψ(u) denotes image

prior (also called the regularization term) and λ is the regularization parameter.
In fact, the above regularization-based minimization can be strictly derived from
Bayesian inference with prior knowledge in image generation models [6]. Many
optimization approaches for regularization-based image inverse problems have
been developed [7–9].

It has been widely recognized that image prior knowledge plays a critical role
for image restoration approaches. Therefore, designing effective regularization
terms to reflect intrinsic image prior models is at the core of image restoration.
Classical regularization terms utilize local structural patterns and are built on
the assumption that images are locally smooth except at edges. Several represen-
tative work in the literature includes half quadrature formulation [10], Mumford-
Shah (MS) model [11] and total variation (TV) models [12]. These regularization
terms demonstrate high effectiveness in preserving edges and recovering smooth
regions. However, they usually smear out image details and cannot deal well
with fine structures since they only exploit local statistics, neglecting nonlocal
statistics of nature images.

In recent years, the most significant nonlocal statistics in image processing
is perhaps the nonlocal self-similarity exhibited by natural images. The nonlocal
self-similarity depicts the repetitiveness of higher level patterns (e.g., textures
and structures) globally positioned in images. A representative work is the popu-
lar nonlocal means (NLM) [13], which takes advantage of this image property to
conduct a type of weighted filtering for denoising tasks. This simple weighted ap-
proach is quite effective in generating sharper image edges and preserving more
image details. Later, inspired by the success of nonlocal means (NLM) denoising
filter, a series of nonlocal regularization terms have been proposed [14], which
can be roughly divided into two categories according to their formulations. The
first one is directly derived from NLM [15], since nonlocal filtering can essen-
tially be understood as a quadratic regularization based on a nonlocal graph, as
detailed for instance in the geometric diffusion framework in [16]. The other one
goes one step further to solve general inverse problems by incorporating nonlo-
cal graph into traditional regularization terms, such as nonlocal total variation
(NL/TV) [17] and nonlocal Mumford-Shah (NL/MS) [18]. Due to the utilization
of self-similarity prior by adaptive nonlocal graph, nonlocal regularization terms
produce superior performance over the local ones, with the ability of preserving
sharper image edges and more image details [19]. Nonetheless, there are still
plenty of image details and structures that cannot be recovered accurately. The
reason is that the above nonlocal regularization terms depend on the weighted
graph, while it is inevitable that the weighted manner gives rise to disturbance
and inaccuracy [20].

Vision information in natural images is extremely complex. Although many s-
tatistical priors have been explored from distinctive viewpoints, each prior model
has its shortcomings especially for a specific applications. Intuitively, it is natu-
ral to consider to combine the existing prior models and let them collaborate to
result in a better solution. However, from point of view of theory, is difficult to
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propose a general collaboration framework that combines multiple prior models.
Some previous work incorporates two or more prior models into a regularization-
based framework for image restoration [21–23]. In [21], the local total variation
model and nonlocal adaptive 3-D sparse representation model are combined to
solve image restoration from partial random samples in spatial domain. In CS-
MRI (Compressive Sensing Magnetic Resonance Imaging) models, the linear
combination of total variation and wavelet sparse regularization is popular [22,
23].

The existing methods of combining multiple prior models mainly add the
prior knowledge as a regularization term in the objective function to be opti-
mized. Although some improvements have been reported, the complex objective
function with pre-defined weights of different priors and the high computation
complexity in the optimization process restrict the regularization methods from
being a general framework. The regularization terms depend on the weighted
graph, however it is inevitable that the weighted manner gives rise to distur-
bance and inaccuracy. In this paper, a novel and general multi-prior collabora-
tion framework is proposed as shown in Fig. 1. Instead of merging multi-prior
in a traditional predefined regularization term, we evaluated the potential of
the prior models on current degraded images as well as their coupling dynam-
ically. The collaboration of multiple priors is mathematically formulated as a
ridge regression problem. Due to the computation complexity of dealing with
big reference data, scatter-matrix-based kernel ridge regression (KRR) is pro-
posed. Compared with the traditional KRR, scatter-matrix-based KRR achieves
relative low computation cost and ensures accuracy and robustness at the same
time.
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Fig. 1. The proposed multi-prior collaboration framework.
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2 Kernel Ridge Regression based Multi-Prior
Collaboration Model

Given the prior model set P = {P1, . . . ,PM} and a degraded image I ′, we can
obtain the restored images {I ′

r⊕1, . . . , I
′
r⊕M} with M prior models respectively.

let I denote the non-degraded image corresponding to the degraded image I ′.
It is reasonable to assume the residual I − I ′ has a linear relationship with the
innovation brought by each prior model {I ′

r⊕1 − I ′, . . . , I ′
r⊕M − I ′}, which can

be expressed as

I − I ′ = [I ′
r⊕1 − I ′, I ′

r⊕2 − I ′, . . . , I ′
r⊕M − I ′]ω = Γω (3)

where Γ = [I ′
r⊕1 − I ′, . . . , I ′

r⊕M − I ′] ∈ Rd×M and ω ∈ RM is the weight vector
for the restoration which can be obtained by a regression process. The final
restoration image Î can be obtained as

Î = I ′ + Γω . (4)

In the multi-prior collaboration, the training data, i.e., the reference images,
are used to predict the restoration performance with respect to the current
degraded image. Ideally, a reference images set with the similar content and
category can evaluate the restoration capability of the different priors when
applied to the current degraded image.

Define R = {R1, . . . ,RN} is the set of reference nature images with the
similar content and category with the current degraded image I ′, and their
corresponding degraded images consist of the set of reference degraded images
R′ = {R′

1, . . . ,R
′
N}. For each degraded image R′

n ∈ Rd, a restored result R′
n⊕m

can be obtained with prior Pm. Obviously, according to Eq. 3, the reference
images should satisfy R′

1⊕1 −R′
1 . . . R′

1⊕M −R′
1

...
. . .

...
R′

N⊕1 −R′
N . . . R′

N⊕M −R′
N

ω = X⊤ω =

 R1 −R′
1

...
RN −R′

N

 = y , (5)

whereX ∈ RM×N̂ is the sample matrix and N̂ = d×N is the number of samples.
A classic solution to overcome the above over-fitting problem in the regres-

sion analysis is the so-called ridge regularization, also known as Tikhonov reg-
ularization, in which a ridge penalty term is imposed on the objective function
so as to keep the regressor coefficients under control. This leads to the classic
ridge regression method. Given a finite training dataset, the objective of a linear
regressor is to minimize the following cost function

ERR(ω) =
N̂∑
i=1

ϵ2i + ρ∥ω∥2 , (6)

where ϵi = ω⊤xi − yi and xi is the i-th column of matrix X and yi is the
i-th element of vector y and ρ is the ridge parameter. The principle of ridge
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regression lies in the incorporation of a penalty term into the loss function to
control the regressor coefficients. Being adjustable by the ridge parameter ρ, the
penalty term can effectively mitigate the over-fitting problem and thus enhance
the robustness of the learned classifier.

2.1 Kernel Based Approach: Learning Models in Empirical Space

With a kernel function ϕ : RM → RJ mapping a sample xi from the M -
dimensional space to the J-dimensional space, the objective is to find the decision
vector u ∈ RJ and the threshold b such that

min
u,b

EKRR(u, b) = min
u,b

{
N̂∑
i=1

ϵ2i + ρ∥u∥22} , (7)

where

ϵi = u⊤ϕ(xi) + b− yi , ∀i = 1, . . . , N . (8)

In matrix notation,

EKRR(u, b) = ∥Φ⊤u+ be− y∥22 + ρ∥u∥22 . (9)

where Φ = [ϕ(x1), . . . , ϕ(xN̂ )] ∈ RJ×N̂ . The zero-gradient point of EKRR(u, b)
with respect to u can be obtained as

∂EKRR(u, b)

∂u
= 2Φ(Φ⊤u+ be− y) + 2ρu = 0 . (10)

By Eq. 10, we have

u = −ρ−1Φ(ΦTu+ be− y) . (11)

Thus, there exists an N̂ -dimensional vector a such that u = Φa. This establishes
the validity of LSP, i.e. u ∈ span[Φ]. The knowledge of the LSP is instrumental
for the actual solution for u. More exactly, on plugging the LSP, u = Φ
boldsymbola into Eq. 9, we obtain

E′
KRR(a, b) = ∥Φ⊤Φa+ be− y∥22 + ρa⊤Φ⊤Φa (12)

= ∥Ka+ be− y∥22 + ρa⊤Ka . (13)

where K = Φ⊤Φ ∈ RN̂×N̂ . The zero-gradient point of E′
KRR(a, b) with respect

to a leads to K + ρI e

e⊤ 0

[
a
b

]
=

[
y
0

]
, (14)
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2.2 Scatter-matrix based approach: Multi-prior Models
Collaboration in the Intrinsic Space

By Eq. 10, we have the following optimal decision vector

u = (ΦΦ⊤ + ρI)−1Φ(y − be) (15)

= (S + ρI)−1Φ(y − be) . (16)

where S = ΦΦ⊤ ∈ RJ×J . The first-order gradient of E′
KRR(u, b) with respective

to b leads to

∂E′
KRR(u, b)

∂b
= e⊤Φ⊤u+ be⊤e− e⊤y (17)

= e⊤Φ⊤u+ N̂ × b− e⊤y (18)

Let the first-order gradient be zero, the solution for KRR may be derived from
the matrix system [

S + ρI Φe

e⊤Φ⊤ N̂

] [
u
b

]
=

[
Φy
e⊤y

]
, (19)

We have so far independently derived the optimal KRR solutions both for the
intrinsic space and for the empirical-space formulation. Logically, both approach-
es should lead to the same solutions. However, as an alternative verification, we
shall now provide an algebraic method to directly connect the two solutions. For
the kernel-matrix-based solution (Eq. 20), note that K = Φ⊤Φ, we obtain

[
e⊤ −ρ

] [K + ρI e
e⊤ 0

] [
a
b

]
=

[
e⊤ −ρ

] [y
0

]
(20)

[
e⊤K + e⊤ρI − ρe⊤ e⊤e

] [a
b

]
= e⊤y (21)

[
e⊤K e⊤e

] [a
b

]
= e⊤y (22)

e⊤Ka+ e⊤eb = e⊤y (23)

e⊤Φ⊤Φa+ N̂b = e⊤y (24)

e⊤Φ⊤u+ N̂b = e⊤y (25)

By Woodbury’s matrix identity [24], we have

(K + ρI)−1 = ρ−1I − ρ−1ΦT (ρI + S)−1Φ (26)

and it follows that

Φ(K + ρI)−1 = ρ−1Φ− ρ−1S(ρI + S)−1Φ = (ρI + S)−1Φ . (27)

We can obtain

u = Φa = Φ(K + ρI)−1(y − be) = (ρI + S)−1Φ(y − be) . (28)
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On pre-multiplying the above by (ρI + S), we arrive at

(ρI + S)u = Φy −Φeb (29)

By combining Eq. 25 and Eq. 29, which is equivalent to the formulation given
in Eq. 19 derived for the original space.

3 Iterative pursuit degraded image restoration

In order to obtain more refined restoration results, an iterative pursuit is pro-
vide to guide the restoration process. This process is based on the following
assumptions: the reference big data simulate the restoration process and their
performance will give a reliable prediction of the current restoration, which will
provide the restoration for each single prior models. Firstly, in each iterative
step each image in reference image set is restored with prior models respectively
and the results and the corresponding residual with the ground truth is then
used to get the multi prior model corporation rule; then, each image in the ref-
erence degraded set is further updated with the same rule. A simple illustration
is shown as Fig. 2. In each step of the iterative process, for each reference im-
age R′

n, M restored images {R′
n⊕1, . . . ,R

′
n⊕M} are obtained, then projected to

{R̃
′
n⊕1, . . . , R̃

′
n⊕J} where R̃

′
n⊕j(m,n) = ϕj(R

′
n⊕1(m,n), . . . ,R′

n⊕M (m,n)). The

ground truth Rn is also projected into {R̃n⊕1, . . . , R̃n⊕J} where R̃n⊕j(m,n) =
ϕj(Rn⊕1(m,n), . . . ,Rn⊕M (m,n)).

Degraded 
Image

Prior 1

Prior 2

Prior 3

Restored 
Image

Prior 2

Prior 1 Prior 3

Restored 
Image

Ground
Truth

Prior 2

Prior 1 Prior 3

Fig. 2. An illustration of the proposed multi-prior collaboration framework.

In the situation of linear regression, for each prior model Pm, it hasN restora-
tion results when applied to the set R′. The divergent of PSNR of these N
restored images reflects the prediction certainty of Pm. Supposed for degraded
images R′, Pm gets the prediction certainty, i.e., the variation of Peak Signal to
Noise Ratio (PSNR) as σ2

m, then in the linear collaboration, the total certainty

can be expressed as
∑M

m=1 ω
2
mσ2

m Since a prior model performs restoration d-
ifferently for different images, we hope the restored results of each prior model
has least divergent.

Similarly, in the nonlinear situation, the prediction certainty can be intro-
duced into Eq. 7 and resulting the following objective function
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E′
KRR(u, b) =

N̂∑
i=1

ϵ2i + ρ∥u∥22 + λ
J∑

j=1

u2
jσ

2
j , (30)

where σ2
j = var(PSNR(R̃

′
1⊕j , R̃1⊕j), . . . , PSNR(R̃

′
N⊕j , R̃N⊕j)).

In matrix notation,

E′
KRR(u, b) = ∥Φ⊤u− y∥22 + ρ∥u∥22 + u⊤Uu . (31)

where U = diag(σ2
1 , σ

2
2 , . . . , σ

2
M ) is a diagonal matrix.

The zero-gradient point of E′
KRR(u, b) with respect to u can be obtained as

∂EKRR(u, b)

∂u
= 2Φ(Φ⊤u− y) + 2(ρI +U) = 0 . (32)

The solution is

u = (ΦΦ⊤ + ρI +U)−1Φ(y − be) = (S + ρI +U)−1Φ(y − be) . (33)

The detailed procedure of the proposed image restoration is summarized in
Algorithm 1.

4 Experiments

To evaluate the performance of the proposed framework, we take 5 classical pri-
ors: TV, BM3D [25], FOE [26], KSVD [27], BLSGSM [28]. The total variation
(TV) model [29] has been quite successful used in many aspects of the image
processing. TV model favors the piecewise smoothness, and it represents a local
prior. In this approach, TV model serve as a regularizer in an unconstrained
convex minimization problem, and the parameter before TV model controls the
tradeoff between the regularity and fidelity terms. And the Block-matching 3D
(BM3D) [25] algorithm is based on the phenomenon that a patch (block) tends
to recur in a natural image. Denoising process is mainly that grouping similar
2D image blocks into 3D data arrays then through the procedure of collabora-
tive filtering. Obviously, this method is based on a nonlocal prior. The Fields
of Experts(FOE) [26] that extends traditional Markov Random Field (MRF)
models by learning potential functions over extended pixel neighborhoods is a
classic method, The approach develop a framework for learning generic, expres-
sive image priors that capture the statistics of natural scenes. And the approach
of KSVD [27] taken is based on sparse representation over the trained overcom-
plete dictionary. In the sparse representation modeling the choice of dictionary
is an important issue, and there has been much effort in learning dictionaries
from a set of example image patches [27]. In the algorithm of BLS-GSM [28],
the authors describe the method for removing noise from digital images, based
on a statistical model of the coefficients of an overcomplete multi-scale oriented
basis.
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Algorithm 1: The proposed multi-prior collaboration and degraded image
restoration
Input : corrupted image I ′, M prior models P = {P1, . . . ,PM}, reference

non-degraded images set R = {R1,R2, . . . ,RN}, λ, ρ
Output: Final restored image
Initialization: obtain reference degraded image set Rd = {R′

1,R
′
2, . . . ,R

′
N}

repeat
for each P ∈ P do

Restore I ′ with Pm and obtain I ′m
end

Obtain ϕI′ = ϕ(I ′1 − I ′, I ′2 − I ′, · · · , I ′M − I ′) ∈ Rd×J

for each R′
n ∈ Rd do

for each P ∈ P do
Restore R′

n with Pm and obtain R′
n⊕m

end

Obtain ϕR′
n
= ϕ(R′

n⊕1 −R′
n,R

′
n⊕2 −R′

n, · · · ,R′
n⊕M −R′

n) ∈ Rd×J

project {R′
n⊕1, . . . ,R

′
n⊕M} to {R̃

′
n⊕1, . . . , R̃

′
n⊕J} with

R̃
′
n⊕j(m,n) = ϕj(R

′
n⊕1(m,n), . . . ,R′

n⊕M (m,n))

Translate Rn to {R̃n⊕1, . . . , R̃n⊕J} with

R̃n⊕j(m,n) = ϕj(Rn⊕1(m,n), . . . ,Rn⊕M (m,n))
end

Obtain U and Φ = (ϕ⊤
R′

1
, ϕ⊤

R′
2
, . . . , ϕ⊤

R′
N
)⊤

Compute u using Eq. 33

Update I ′ = u⊤ϕI′ + I ′

for each R′
n ∈ Rd do

Update R′
n = u⊤ϕR′

n
+R′

n

end

until Stopping criterion is satisfied

In experimental settings, the type and intensity of noise is known, that is, the
noise model is determined. So almost all the proposed algorithms rely on some
explicit or implicit assumptions about the true(noise free) image. The experi-
mental results of TV, BM3D, KSVD, BLSGSM and FOE are all generated by the
original authors’ codes, with the corresponding parameters manually optimized.

4.1 Linear Collaboration of multi-prior models

Because of the fact that the content of the image affect restoration effect, eight
training (and test) images are come from a similar certain class of textured
images. These eight images are shown in Figure 3.

Table 1 lists PSNR results of TV model and BM3D model collaboration. All
the images are degraded by additive Gaussian noise σ = 12. The coefficients of
each image is obtained by leave-one-out cross validation. That means,in order
to obtain the coefficient of an image we train the other 7 images.
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Fig. 3. Images used for evaluation and reference set (grey, 512× 512).

(a) Degraded (26.55 dB) (b) BM3D (32.89 dB) (c) TV (32.36 dB) (d) The proposed (33.01 dB) 

Fig. 4. comparison of Gaussian noise removal.

Table 1. TV and BM3D priors collaboration performance (PSNR).

Priors img1 img2 img3 img4 img5 img6 img7 img8

TV 32.36 32.14 32.73 30.39 30.42 30.78 31.00 32.56
BM3D 32.89 32.37 33.26 30.79 30.84 31.03 31.52 33.06

Coef of TV 0.1299 0.1280 0.1325 0.1362 0.1369 0.1352 0.1383 0.1331
Coef of BM3D 0.7735 0.7802 0.7701 0.7768 0.7755 0.7780 0.7720 0.7698
The proposed 33.01 32.60 33.35 30.99 31.03 31.25 31.70 33.15

Gain 0.12 0.23 0.09 0.20 0.19 0.22 0.18 0.09

In the Table 1, the second and third rows represent the restoration results
from TV and BM3D models respectively. The fourth and fifth rows represent
the coefficients of each image. The sixth row reports the performance of the
collaboration of the TV and BM3D with the proposed method. Generally, BM3D
method can get a better result than TV model in this image training set, so we
list the gain between BM3D result and combination result in seventh row. From
Table 1, we could find that the coefficients of TV part are in the range of (0.1280,
0.1383) and the coefficients of BM3D part are in the range of (0.7698, 0.7802).
The coefficients are relatively stable.
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4.2 Nonlinear Collaboration of multi-prior models

One of the distinct difference of our method is the introduction of reference
data in the image restoration process. The proposed multi-prior collaboration
framework is expected a better performance on a bigger reference data set. To
verify the learning efficiency of nonlinear collaboration of multi-prior models with
big data, we use the INRIA Holiday dataset [29], which has 1491 images in total.
One advantage of this data set is that there are multiple images in the same scene
captured at different viewpoints and focal lengths, which ensure the contained
images have the similar content and category. 8 images are selected as test images
and the rest are used as reference images. These same scene and category images
are used to simulate the similar images obtained form a big training data for
the degraded images. All the test images are degraded by additive Gaussian
noise σ = 12. We used iterative pursuit restoration and TRBF3 kernel in this
experiment and the results are shown as Table 2. Nine configurations are used
to evaluate our proposed multi-prior model collaboration.

Table 2. TV and BM3D priors collaboration performance (PSNR).

Priors img1 img2 img3 img4 img5 img6 img7 img8 Gain

1 T&F 32.65 32.35 32.97 30.77 30.79 30.97 31.40 32.80 0.29
2 T&K 32.12 32.48 33.08 30.93 30.95 31.16 31.54 32.92 0.31
3 T&BL 32.86 32.45 33.11 30.81 30.83 31.07 31.52 32.95 0.14
4 BM&F 32.98 32.58 33.33 30.98 31.02 31.23 31.69 33.14 0.15
5 BM&K 33.39 32.98 33.73 31.38 31.42 31.64 32.10 33.54 0.55
6 BM&BL 33.15 32.72 33.46 31.11 31.14 31.36 31.83 33.27 0.28
7 F&K 32.86 32.52 33.13 31.05 31.06 31.22 31.66 32.98 0.39
8 F&BL 32.98 32.56 33.24 30.97 30.99 31.19 31.67 33.08 0.27
9 K&BL 32.89 32.46 33.12 30.90 30.92 31.12 31.58 32.96 0.18

T: TV prior; K: K-SVD prior; BL: BLS-GSM prior;
BM: BM3D prior. Training data: INRIA Holiday dataset

Obviously in all the configuration, the collaborated prior models consider-
ably outperforms the unique prior restoration in all the cases, with the highest
PSNR, achieving the average PSNR improvements over the performance of u-
nique prior adopted is 0.55 dB. With the adopted of big reference data set, the
proposed scatter-matrix-based KRR have a significant improvement in the col-
laboration of multi-prior. An average of 0.28 DB improvement is obtain in the
image restoration.

In the configuration of BLS GSM prior and K-SVD prior, FoE prior and K-
SVD prior, the proposed method get the most significant improvement 0.55 and
0.39 DB. It can be seen that BLS GSM and K-SVD, FOE and KSVD models
have less coupled, while in the configuration of TV and BLS GSM, only 0.14 DB
is got, it implied that there were prior coupled in these two prior models.

If a TRBF3 kernel is adopted, the scatter-matrix-based KRR has an over-
whelming speed advantage over direct KRR. While the conventional KRRs com-
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plexity is N3, the complexity of the scatter-matrix-based KRR is max{J3, NJ2}.
This represents a major saving in computational time. This shows that when N
is huge, the learning complexity becomes very costly both for direct KRR. In
contrast, the scatter-matrix based KRR has a complexity with a growth rate
proportional to N . It allows a super-saving when N becomes enormously large.
It effectively overcomes the curse of empirical degree.

The large-scale database of images plays important role in the quality of re-
constructed images. For an input image, if we cannot find highly correlated im-
ages in the cloud, the scheme cannot output a satisfying quality reconstruction.
Although in our experiment, we used a predefined reference data set, significant
improvement is achieved compared with the unique prior. A refined data set with
more similar content is expected to further improve the restoration performance.

5 Conclusions

In this paper we present a novel framework for image restoration by combining
multiple prior models. An iterative procedure is adopted in which the reference
data are used for evaluation and prediction in each step. Different prior mod-
els are assessed based on their performance on reference data dynamically and
scatter-matrix-based KRR is adopted to collaborate the multi-prior models with
liner computational complexity with the size of reference data set, which applies
to the bid data situation. Our proposed method not only provides an effective
way to collaborate multiple prior models, but also demonstrates the coupling
relationship of the exiting prior models. It provides a metric for the further prior
model design. Besides, the scatter-matrix-based KRR shows significant capabil-
ity of solving large-scale image restoration while with relative low computation
complexity.
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